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A R T I C L E  I N F O A B S T R A C T

The strict monitoring of examinations and evaluation 
of newer methods or instruments is a daily routine 
in clinical laboratory. The automated analyzers accu-
mulate an enormous amount of data from patients’ 
examinations and quality control procedures. This 
laboratory data is meaningless if it does not generate 
the information that we can extend to the population 
of our interest. In an analytical work, the most impor-
tant operation is the comparison of data, to quantify 
accuracy and precision and to generate meaningful 
explanation for clinician and patients queries. Most 
of the information needed in the regular laboratory 
work can be obtained with the use of simple conve-
nient statistical tools. This article describes the ba-
sics of laboratory statistics, the knowledge of which 
answers about the application of quality control in 
laboratory, accuracy and diagnostic power of our ex-
aminations, variability in reports, comparison of dif-
ferent methods and derivation of a biological refer-
ence interval for an analyte. 
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INTRODUCTION

In the clinical laboratory, statistics are used to 
verify and monitor the performance of analyti-
cal methods and to guide the clinical interpreta-
tion of laboratory data. Laboratory statistics can 
be broadly described under following headings

1.	 Quality control and statistics

2.	 Diagnostic power of a laboratory test

3.	 Variability in Reports

4.	 Method Comparison

5.	 Reference Interval

QUALITY CONTROL

Quality control is the analysis of control mate-
rials, comparing the results with a predefined 

acceptable limit and plotting a result in a chart. 
Internal quality control data is best visualized 
using a Levey-Jennings control chart where the 
dates of analyses are plotted along X-axis and 
control values are plotted on Y-axis. The mean 
and one, two and three standard deviation (SD) 
limits are also marked on the Y-axis. Inspecting 
the pattern of plotted points provides a simple 
way to detect random error and shifts or trends 
in the calibration. Daily repeating the same 
control sample should produce a normally dis-
tributed set of data. This means, approximately 
66% of values should fall between +/-1SD rang-
es and be evenly distributed on either side of 
mean. Similarly, 95% and 99 % of values should 
fall within +/-2SD and +/-3SD limits respectively. 
(Figure 1) A calculation of mean, standard de-
viation and coefficient of variation (CV) of this 

Figure 1 Normal distribution curve
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Figure 2 Illustration of  systemic and random error and concept of  measurement 
of  uncertainty
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dataset is useful for further calculation and 
derivation of other laboratory entities (Figure 
2). Mean is the average value of measurements 
and SD is the primary measure of dispersion or 
variation of the individual result from the mean 
value. To derive SD, we calculate the deviation 
from the mean for each observation; square 
those results, sum them, divide by the number 
of observations minus one, and finally take a 
square root. CV is the SD expressed as a percent 
of the mean. Acceptable CV needs to be defined 
for each analyte based on medical significance.

Quality control rules are designed to detect two 
types of error, systemic error or bias and random 
error or imprecision. Precision is the agreement 
with replicate measurements and therefore the 
imprecision is caused by increased random er-
ror. Accuracy is the agreement between best 
estimate of the mean of results and its true 
value, therefore inaccuracy is caused by in-
creased systemic error. These two errors when 
combined give a total analytical error (Figure 
3). [1] In practice, replicate measurements can 
reduce, but not completely eliminate system-
atic and random errors, and therefore total er-
ror cannot be exactly known. [2] It follows that 
the true value of a measured quantity cannot 
be exactly known either. This assumption is fun-
damental to the measurement of uncertainty 
(MU) approach. 

MU approach focuses on identifying the disper-
sion of results that might have been obtained 
for an analyte if a sample had been measured 
repeatedly. To do this, the MU approach uses 
available data about repeated measurements 
from a given measuring system to define an in-
terval of values within which the true value of 
the measured analyte is believed to lie, with a 
stated level of confidence. This can be simply es-
timated from the CV calculated from repeated 
measurements of internal quality control sam-
ple. (Figure 2 and 3) In the MU concept, a mea-
surement result can comprise two uncertainties 

(i) that associated with a bias correction, and (ii) 
the uncertainty due to random effects. [3] Both 
these uncertainties are expressed as SDs which, 
when combined together, provide the com-
bined standard uncertainty for the procedure. 
(Figure 2 and 3)

External quality control (EQC) refers to the pro-
cess of controlling the accuracy of an analytical 
method by interlaboratory comparisons. Two 
of the most important comparison statistics of 
an Interlaboratory program are the coefficient 
of variation ratio (CVR) and standard deviation 
index (SDI), which are consensus-based metrics 
of imprecision and bias, respectively.

The CVR allows evaluating imprecision relative 
to the consensus group and is expressed math-
ematically by the formula: Lab CV/ Consensus 
group CV

If the labs imprecision is equal to the impreci-
sion of consensus group, then CVR will be 1.0. 

The SDI or Z-score is a useful parameter for eval-
uating bias relative to the consensus group and 
is expressed mathematically by the formula:

(Lab mean-Consensus group mean)/ Consensus 
group SD

The target SDI is 0.0, which indicates that the 
labs mean is identical to the consensus group 
mean. A positive or negative deviation from this 
target statistic may indicate a bias compared to 
the consensus group mean. 

DIAGNOSTIC POWER OF A TEST

Any user of the laboratory report wants to know 
the probability of disease given a positive or 
negative test result. There is no such ideal test 
which can achieve a perfect discrimination for 
non-diseased and diseased individuals. 

Diagnostic accuracy of a test is measured by 
calculating the tests’ sensitivity, specificity, and  
predictive values (Figure 4 and 5); these can be 



eJIFCC2023Vol34No2pp090-102
Page 94

Vivek Pant, Santosh Pradhan, Keyoor Gautam
Basics of laboratory statistics

further utilized to construct a Receiver Operating 
Characteristics (ROC) curve. 

Limit of Detection (LoD), and Limit of Quan
titation (LoQ) are terms used to describe the 
smallest concentration of a measurand that can 
be reliably measured by an analytical proce-
dure. (Figure 5) LoD is the lowest analyte con-
centration at which detection is feasible. LoQ is 
the lowest concentration at or above the con-
centration of LoD and this concentration must 
be sufficient to produce analytical signals that 
meet predefined targets for bias, imprecision 

and total error. LoD is important for tests used 
to discriminate between the presence and ab-
sence of an analyte (e.g. drugs, troponin-I, hu-
man chorionic gonadotrophin). Likewise LoQ is 
important to reliably measure low levels of an-
alyte (e.g. TSH, CRP) for clinical diagnosis and 
management. 

Sensitivity and specificity are not absolute. They 
are affected by the prevalence of disease and 
may vary among different populations. Each 
laboratory test has its defined sensitivity and 
specificity by the manufacturer and it should be 

Figure 3 Use of  internal and external quality control data
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taken into the clinical consideration for appro-
priate application of the test.

If a test has high sensitivity, it would not miss a 
disease, but will also yield false positive results. 
If a test has high specificity, it will find patients 
who do not have disease but there will be peo-
ple who have disease and will be tested nega-
tive. This is more dangerous if the investigations 
are related to infectious diseases. The threshold 
for a given test is determined by examining the 

ROC curve, where the sensitivity is plotted as 
the function of the 1-Specificity for different cut 
off points. (Figure 6) The area under the ROC 
curve reflects the diagnostic ability of a test to 
differentiate people with and without disease 
of interest.

For example, if the area under the ROC curve 
is 96%, then there is a 96% chance that a ran-
domly selected diseased person would have a 
more abnormal result than a randomly selected 

Figure 4 Formulas to calculate diagnostic power of  a test
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Figure 5 The slope of  the concentration versus detector response 
signifies the sensitivity of  the test

LOD- Limit of detection, LOQ- Limit of quantitation.

Figure 6 ROC curve
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non-diseased person. The ROC curve also al-
lows comparing the curves (diagnostic accura-
cy) generated from two or more tests. 

Clinicians are more interested to know the pre-
dictive value of a test. The predictive value de-
notes the overall performance of a diagnostic 
laboratory test in terms of its ability to accu-
rately distinguish the presence of a disease state 
with a positive test result from the absence of a 
disease state with a negative test result. (Figure 
4). The negative predictive value can be regard-
ed as a reassurance number - when it is very 
high, the patient can be assured that they don’t 
have disease.

To calculate the predictive values, the 2x2 table 
is constructed. Predictive values are affected 
by outcome prevalence. The lower the disease 
prevalence, lower will be the positive predictive 
value and this will raise the negative predictive 
value. Thus, positive predictive value, even for 
a good test with a high sensitivity, can be poor 
when there are few persons with the disease. 
We can also calculate the predictive value using 
Bayes’ Theorem which describes the probability 
of occurrence of an event related to any condi-
tion. [4]

For a laboratory screening tests, particularly 
where the results of the individual tests are 
highly variable, a statistical entity known as 
Multiple of the Median (MoM) is used to re-
port the results. MoM is helpful to estimate the 
risk for pregnancy complication such as Down’s 
syndrome, neural tube defect, preeclampsia in 
various weeks of gestation.

Example- Alpha feto protein (AFP) testing is 
used to screen for a neural tube defect during 
the second trimester of pregnancy. Because 
AFP concentrations normally increase during  
pregnancy, MoM is used to normalize the test 
result. The MoM is a measure of how far an in-
dividual test result deviates from the median 
value of a large set of AFP results obtained from 

unaffected pregnancies. For example, if the 
median AFP result at 16 weeks of gestation is 
20 ng/mL and a pregnant woman’s AFP result at 
that same gestational age is 60 ng/mL, then her 
AFP MoM is equal to 60 divided by 20 (60/20) 
or 3.0.  In other words, her AFP result is 3 times 
higher than normal.

Calculation for MoM is done by dividing the 
patient result of particular biomarker by the 
median result of same biomarker determined 
by the laboratory. The Mom cut off for each pa-
rameter varies by laboratory as it depends on 
the population characteristics and medical his-
tory as well as the analyzer used for making the 
measurements.

METHOD VERIFICATION

All the invitro diagnostic instruments and re-
agents that are available must be documented 
and approved by an official agency. In Europe, 
the documentation must get a CE mark, and in 
the United States, an approval procedure by 
FDA is mandated.

Validation of the products is done at the manu-
facturer’s level to show that the device/reagent 
is fit for its purpose. This includes measurement 
of trueness and precision, linearity, chemical 
interferences, carryover, and risk appraisal. [5] 
Clinical laboratories usually limit the verifica-
tion process to compare claims regarding true-
ness and precision. The other verification crite-
ria may be regarded as inherent to the method/
instrument however it depends on the accredi-
tation bodies. 

To verify the precision, at least 5 observations 
during 5 days, in a patients sample or a reference 
material, are suggested. [6] When the impreci-
sion is obtained from repeated measurements 
of the same sample and unchanged conditions, 
it is called the repeatability or within-series vari-
ation. If conditions change between estimating 
the imprecision, for example, from one day to 
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another or after recalibration of the measure-
ment procedure, the imprecision is character-
ized as between-series imprecision. Using both 
these imprecision, the combined or intralabora-
tory imprecision can be obtained. Statistically, 
an ANOVA test can also be used to estimate the 
within- and between-series variation and pro-
vides a method to estimate the within-labora-
tory variation.

To verify bias, laboratories compare a new mea-
surement procedure with previous ones by 
splitting samples into aliquots. At least 20 num-
bers of samples in the entire measuring interval 
is chosen and measured by both methods. [6] 
Before the statistical evaluation is performed, 
the scatter plot and difference plots should be 
carefully studied to identify outliers and are 
deleted. Statistically, the significance of the dif-
ference between the methods is evaluated by 
the Student t test. This data is used for vari-
ous more advanced calculations, for example, 
the regression function, that is, the slope and 
intercept, and the correlation coefficient. This 
is discussed further in the method comparison 
section below.

METHOD COMPARISON

It is mandatory to evaluate analytical methods 
in the laboratory before their use for patient ex-
aminations. In addition to determining experi-
ments for measuring accuracy and precision, it 
is also necessary to compare the new method 
to be introduced and other methods in use. 

Method comparison involves testing patient 
samples during a number of different analytical 
runs by both the new and current methods. In 
most of the cases, comparison method is the 
existing method in one’s own laboratory or a 
reference laboratory. 

The comparison aims to estimate the constant 
and proportional differences between the two 
methods. Various statistical approaches can 

be used for method comparison procedures. 
Pearson’s correlation coefficient is often used 
for such comparisons but does not provide ap-
propriate conclusions. The correlation describes 
the linear relationship between two data sets, 
but not their agreement, and does not reveal 
whether there is a constant or proportional dif-
ference between the two data sets.

There are various ways to construct the func-
tion that binds two variables. To evaluate the 
equivalences between two methods, a regres-
sion function is used. A straight line can ade-
quately describe the relationship between the 
two variables.

For this purpose, at least 40 patient samples 
should be analyzed by both methods with at 
least 2 reagent lots on each analyzer. [7] The 
analytical concentration should span the en-
tire analytical range. The results are plotted 
on the Y-axis (dependent) and the reference 
method (existing) on the X-axis (independent). 
A linear regression line is inserted through the 
data points and the slope and Y intercept are 
calculated. (Figure 7a) There are a number of 
spreadsheets available that can automatically 
calculate and plot regression graphs which can 
be used by the laboratory. [8, 9] The best fit line 
is defined by the equation; Y=mx + b, where m 
is the slope and b is the Y intercept. A perfect 
correlation will have all points lying on a line at 
a 45o angle to the X-axis.

This line will have a Y-intercept of zero and slope 
of 1. The correlation coefficient (R2) will be 1.00 
and the standard error will be 0. 

The common model of this simple linear regres-
sion is easy but often may not be suitable for 
our daily evaluations. The linear regression as-
sumes that the variable x is error-free and that 
the error of the test method, variable y, is dis-
tributed normally and is constant throughout 
the range of concentrations studied. (Figure 7a) 
We rarely meet these assumptions in practice. 
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Figure 7 Illustration of  various regression and method comparison models
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Thus, other statistical methods for comparing 
methods have been developed, such as the 
Passing-Bablok regression, Deming regression, 
Mountain plot, Bland and Altman plot. (Figure 
7b-7d)

Deming regression does not assume that the 
reference method is free from error and it is the 
best approach to use when two methods are 
expected to be identical and the data is normal-
ly distributed without outliers. Passing-Bablok 
regression is used for nonparametric data and 
performs better when outliers are present. 
However, Passing-Bablok is computationally in-
tensive and unreliable for small sample sizes. 

VARIABILITY IN REPORTS

Serial measurements of laboratory parameter 
are often required to monitor patient’s health. 
However, repeated laboratory measurements 
are seldom identical. The change in laboratory 
result may be due to biological variation, analyt-
ical imprecision or a change in patients’ health 
condition. The minimum change required to 
conclude that two serial measurements are like-
ly different is termed as the reference change 
value (RCV). A good clinical laboratory should 
have sufficient data to calculate RCV which are 
based on the estimates of biological variation 
(BV) data and analytical variation (AV) data. The 
BV data are mostly taken from the European 
Federation of Clinical Chemistry and Laboratory 
Medicine (EFLM) BV database, which delivers 
real time BV data for numerous analytes. [10] 
This database is based on results from systemic 
reviews and published studies by the BV data 
critical appraisal checklist. [11]

When the pre-analytical conditions are unvary-
ing, the RCV formula becomes: 

RCV = √2 x Z x √(CVA2 + CVI2)

Where, Z indicates the number of standard de-
viations appropriate to the desired probability, 

1.96 for P < 0.05; CVA, analytical imprecision; 
and CVI, within subject biological variation. The 
CVA of each test is provided by imprecision test-
ing in laboratory.

Acceptable CV or analytical precision needs to 
be defined for each analyte based on medical 
significance. Generally, the precision should be 
equal to or less than one half of the within sub-
ject biological variation.

Therefore, analytes with larger biological varia-
tion do not require as much analytical accu-
racy as analytes with small biological variation. 
For example, BV of fasting triglyceride is 20%; 
therefore, analytical variation can be as high as 
10% without significantly affecting medical de-
cision making.

REFERENCE INTERVAL

When developing reference intervals (RI), clini-
cal laboratories must consider what data sourc-
es and statistical methods to use. RI for the 
same measurements and instruments may dif-
fer between laboratories because of the differ-
ences in:

a.	 Operating conditions

b.	 Criteria for selection of healthy subjects

c.	 Patient populations

d.	 Geographical areas in relation to tem-
perature, altitude, barometric pressure 
and humidity

e.	 Subject preparation and sample 
collection

The RI is defined as the interval corresponding  
to the central 95% of values of a reference pop-
ulation, including the two boundary limits: up-
per reference limit (+ 2SD) and lower reference 
limit (-2SD). (Figure 1) 

It is recommended that medical laboratories 
determine their own RIs to cover the variabil-
ity of their local populations and their specific 



eJIFCC2023Vol34No2pp090-102
Page 101

Vivek Pant, Santosh Pradhan, Keyoor Gautam
Basics of laboratory statistics

analytic methods and devices. For the process 
of RI determination, the Clinical Laboratory 
Standards Institute (CLSI) recommends “direct” 
approach, where well defined reference sub-
jects are selected with pre-defined criteria and 
the measurements are done afterwards. Direct 
method is hard to apply for every laboratory in 
routine practice for it demands much time and 
money. The alternative approach is the “indi-
rect” method where test results of patients that 
were ordered for screening, diagnosis or follow-
up purposes are derived from laboratory infor-
mation system (LIS) and used to determine the 
RIs. This method is faster and cheaper. Besides, 
the results obtained by the indirect method take 
into account the analytical and biological vari-
ability of the analyzed parameter. Recently, the 
International Federation of Clinical Chemistry 
and Laboratory Medicine (IFCC) Committee on 
Reference Intervals and Decision Limits encour-
ages the use of indirect methods to establish 
and verify reference intervals. 

Both parametric and non-parametric approach-
es may be taken when analyzing reference range 
data. The parametric approach involves calcu-
lating the mean and standard deviation to de-
termine the range of values that fall within the 
95% confidence interval. The non parametric 
approach involves establishing the values falling 
at the 2.5 and 97.5 percentiles of the popula-
tion as the lower and upper reference limits. 
Outliers can have substantial effect on the cal-
culation of reference ranges by this method and 
should be removed. Mathematically, outliers 
are results that differ from the mean by more 
than 3SD or differ from other results by more 
than 30%.

Consensus RI for some analytes is determined 
by medical experts based on the result of clini-
cal outcome studies. Whenever, the consen-
sus RI is available, clinical laboratories should 
report these values instead of determining 
their own RI. Example of consensus groups: 

American Diabetes association, American Heart 
Association, IFCC etc.

For an FDA approved test method, the clinical 
laboratories can adopt the manufacturers stat-
ed RI. However it should be verified in healthy 
cohort of samples. Ideally, 40 healthy samples 
(20 men and 20 women) should be tested and if 
95% of the results fall within the published ref-
erence range, it can be accepted for use.

CONCLUSION

In this article the basic laboratory statistics is 
explained in its simplest form. This offers guid-
ance to understand and employ basic statistical 
controls and methods required by the clinical 
laboratory.

However, the authors suggest to refer other 
sources for step-by- step guidance to the qual-
ity control, method development, validation/
verification and comparison of test methods.
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