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A R T I C L E  I N F O A B S T R A C T

Obesity remains the most prevailing disorder in 
childhood males and females worldwide. Its high 
prevalence markedly predisposes children to insulin 
resistance, hypertension, hyperlipidemia and liver 
disorders while enhancing the risk of type 2 diabetes 
and cardiovascular diseases. In this review, the rela-
tionship of obesity with genetic and environmental 
factors will be described and the underlined causes 
will briefly be reported. As obesity in children consti-
tutes an increasingly health concern, important po-
tential biomarkers have been discussed for the diag-
nosis, treatment and follow-up of the wide range of 
overweight-related complications. Awareness about 
the applicability and limitations of these preven-
tive and predictive biomarkers will intensify the re-
search and medical efforts for new developments in 
order to efficiently struggle against childhood obesity. 
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INTRODUCTION

The prevalence of childhood obesity is rapidly 
increasing and presents a major public health 
concern in developed and developing countries 
(1-4), and assessment of obesity is of utmost im-
portance to paediatricians. However, there are 
varying definitions of obesity in children and ad-
olescents, along with ethnic-specific variations 
in body fat content and distribution, which com-
plicate this undertaking (5). Moreover, these di-
vergences may explain prevalence dissimilarities 
associated with cardiometabolic diseases (CMD) 
(e.g. insulin resistance, hypertension, dyslipid-
emia and diabetes) in adulthood (6-11). In the 

context of epidemiological studies, body mass 
index (BMI, weight/height2) in adults is currently 
considered as a diagnostic test (separator variable) 
which is able to identify overweight (25 kg/m2) 
and obese (30 kg/m2) individuals and may pre-
dispose to increased CMD risk, morbidity and 
mortality (12, 13). However, no similar definite 
values can be used in childhood and adolescence 
because of the substantial changes in BMI, which 
occur naturally from birth to adulthood (14, 15), 
and because of the limited data in youth that re-
late BMI trajectory to cardiovascular events later 
in life. Age- and sex-specific BMI cut-offs were 
developed to define overweight and obese us-
ing different nationally representative age- and 

*Adapted with permission from data of Table 4 from Cole TJ et al. (16). Data obtained by averaging the national centiles.
BMI: Body Mass Index. Filled circles: curve for overweight boys; filled square: curve for obese boys;  
filled upward triangles: curve for overweight girls; filled downward triangles: curve for obese girls.
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Figure 1 International age- and sex-specific cut-off  points for BMI  
for overweight and obesity
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sex-specific data sets, following recommenda-
tions from the International Obesity Task Force 
(16, 17). International age- and sex-specific BMI 
cut-offs for overweight and obese girls and boys 
are illustrated in Figure 1. Applying this concept 
to BMI trajectory, Attard et al. (18) demonstrat-
ed that the odds for diabetes were 2.35 higher 
for those with a BMI of 30 kg/m2 relative to 
young male adults who had maintained a BMI 
of 23 kg/m2 over an average of 12 years. These 
data suggest there is potential for improving 
the ability to assess the effect of paediatric obe-
sity on development of diseases at a later time 
point. Secular trends demonstrate that the prev-
alence has plateaued in some countries (19) or 
even decreased (20), but has continued to rise 
in others, independent of how overweight and 
obesity are defined in childhood (1, 21-23).  The 

apparent contradiction could partially depend 
on the span of the retrospective studies and on 
the years included. Nevertheless, the present 
high number of young adults with the stigmata 
of the metabolic syndrome (MetS), and the re-
lated non-alcoholic fatty liver disease (NAFLD) 
justifies that it be considered a major world pub-
lic health issue (24). This review briefly describes 
the various potential causes of obesity in youth 
and underscores the available biomarkers for as-
sociated conditions.

Definite BMI thresholds to identify an increased 
risk for CMD cannot be used in childhood and ado-
lescence. Age- and sex-specific BMI cut-offs to de-
fine overweight and obesity and predict trajectory 
into adulthood should be utilized using different 
nationally representative age- and sex-specific data.          

Figure 2 Factors involved in the development of  obesity
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OBESITY AND LIFESTYLE

Lifestyle is broadly defined as the way or man-
ner by which a person or a group of people lives. 
However, lifestyle can be influenced by a complex 
set of factors that are intertwined and can affect 
the quality of living and health (Figure 2). The 
socioeconomic position (SEP) stands out among 
these factors because it has a direct impact on 
the quality of nutrition and the living environ-
ment, including access to adequate physical ac-
tivity facilities and education. Consequently, a 
comprehensive view must be adopted whenev-
er addressing this topic but a majority of stud-
ies tend to focus in this area in a fragmented 
manner. 

One such study, based on self-reports, demon-
strated that poor children in the United States 
have worse health compared to wealthy chil-
dren. This difference in health status diverged 
further as the children aged; thereby suggest-
ing the adult health gradient had its origins in 
childhood. However, other than family income 
no other factors were considered which could 
explain these results (25). SEP may also impact 
the quality of nutrition. Darmon et al. (26) re-
ported that higher-quality diets consisting of 
whole grains, lean meats, fish, low-fat dairy 
products, fresh vegetables and fruits were as-
sociated with greater affluence, whereas en-
ergy-dense and nutrient-poor diets (refined 
grains, added fats) are preferentially consumed 
by persons of lower SEP. Likewise, in a system-
atic review, Cameron et al. (27) reported that 
children of lower SEP had a steeper weight 
gain trajectory initiating at birth and led to a 
greater prevalence of obesity in children and 
adults. Pre-pregnancy maternal BMI, diabetes, 
pre-pregnancy diet, smoking during pregnancy, 
low birth weight, breastfeeding initiation and 
duration, early introduction of solids, mater-
nal and infant diet quality, and some aspects of 
the home food environment were among the 

early-life predictors of later obesity and amid 
links with SEP. Furthermore, lack of physical 
activity is an additional risk factor for develop-
ing obesity. A longitudinal study involving re-
peated 7-day physical activity recall question-
naires over a 5-year period demonstrated that 
greater fluctuations in physical activity led to an 
increase in body fat in adolescent girls and boys 
(28). An interventional study supported these 
conclusions, demonstrating interruption of sed-
entary time with brief moderate-intensity walk-
ing resulted in an improvement of short-term 
metabolic function in non-overweight children 
without increasing subsequent energy intake 
(29). Despite the difficulty in directly comparing 
studies because of the variety of environmen-
tal factors and defined end-points, systematic 
reviews consistently highlight that better and 
safer access to physical activity resources are 
directly related to increased leisure time physi-
cal activity in children and adolescents, which 
subsequently decreases the risk of developing 
obesity (30-34). 

Access to physical activity resources is directly 
related to higher leisure time physical activity in 
children and adolescents and decreases the risk 
of developing obesity.				                                                                                         

OBESITY AND GENETIC/EPIGENETIC  
FACTORS

In addition to the risk factors previously dis-
cussed, genetic background and foetal pro-
gramming through epigenetic modifications 
are equally important in the development of 
obesity and related diseases. There is also in-
creasing evidence suggesting synergetic ef-
fects between gene variant loci involved in 
metabolic traits and dietary or lifestyle factors. 
Maes et al. (35) compiled data from more than 
25,000 twin pairs and 50,000 biological and 
adoptive family members and reported that 
genetic components contribute 40-70% to the 
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inter-individual variability in common obesity. 
Another study showed that parental obesity 
doubled the risk of adult obesity among both 
obese and non-obese children less than 10 
years of age (36). Few studies have investigat-
ed the gene-environment interactions related 
to sedentary behaviour using large cohorts. 
The Identification and prevention of Dietary- 
and lifestyle-induced health EFfects In Children 
and infantS cohort (IDEFICS) used a subsample 
of 4406 participants to demonstrate that the 
fat mass and obesity-related gene (FTO) poly-
morphism (rs9939609) could explain ~9% of 
the obesity variance, thereby suggesting the 
FTO gene was sensitive to the social environ-
ment (37). To date, genome wide association 
studies (GWAS) have provided evidence for a 
number of gene variants associated with the 

development of obesity in the youth. Willer 
et al. (38), based on a cohort of 11 year-old 
children, demonstrated significant and consis-
tent association between BMI and variant loci 
(SNPs) located in or near the trans-membrane 
protein-18 (TMEM18), potassium channel tet-
ramerisation domain containing-15 (KCTD15) 
and glucosamine-6-phosphate deaminase-2 
(GNPDA2) genes. The high brain and hypotha-
lamic expression of these factors, together with 
FTO and the melanocortin-4 receptor (MC4R), 
independently associated with adiposity and 
insulin resistance (39), supports the argument 
for a neuronal foundation in obesity. Whether 
these loci are modulated under neuronal influ-
ence by the environment or lifestyle remains to 
be elucidated. Graff et al. (40) provided a par-
tial answer by establishing a dose-dependent 

 
             

              
                 

     
             

   
           

              
               

           
          

          

   

         

 
 

 
 

 
 

Figure 3 Predicated BMI Z-score from model based coefficients  
per 7 hours/week of  screen time in the presence  
of  0, 1 and 2 risk (T) FLJ35779  (rs2112347) alleles
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interaction leisure screen time (β = −0.014, 
0.016, and 0.045/7h/week) with GNPDA2 
(rs10938357) SNP in Afro-American subjects for 
0, 1 and 2 risk alleles. They observed a similar 
interaction for the FLJ35779 (rs2112347) gene 
polymorphism (Figure 3). Although interactions 
are documented in each study, they are mod-
est, and individually cannot explain the devel-
opment of obesity or the onset of related dis-
eases. Additional studies are required to probe 
the relationship between polymorphisms in 

multiple genes involved in energy management 
and the numerous environmental and lifestyle 
factors.

The epigenetic control of gene expression 
must also be considered in the understanding 
of the development of obesity. This concept 
stems from the early work of Barker et al. (41), 
who proposed that the tendency to store ab-
dominal fat might be a persistent response to 
adverse conditions which initiated in the foe-
tal life stage but persisted throughout infancy. 
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Legend: (p for interaction = 0.02) in EA (a), and 0, 1 and 2 risk (A) GNPDA2 (rs10938397) alleles, respectively (p for 
interaction = 0.03) in AA (b). 
Abbreviations: BMI (body mass index), ST (hours per week of screen time), EA (European American), AA (African 
American). 
Beta estimates are presented for the interaction model: Multivariable linear models of adolescent BMI Z scores 
regressed on SNP and ST (hr/wk), with SNP by ST interaction term, controlling for age, sex, current smoking (at least 
one cigarette every day for 30 days), geographic region, and self-reported heights and weights (n=39 EA, n= 12 
AA), oversampling of highly educated African Americans (n=281; AA stratum only). Random intercepts allowed for 
individual, family and school with no sample weighting.
*Reproduced with permission from: Graff et al. Pediatr Obes 2013;8:doi:10.1111/j.2047-6310.2013.00195x.
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A myriad of peer-reviewed publications have 
confirmed this initial hypothesis (42-46). Lee et 
al. (47) suggest there is a gene-foetal environ-
ment interaction, one of which occurs through 
in utero exposure to maternal cigarette smok-
ing and leads to a preference in adolescence 
for moderately enhanced fatty foods by silenc-
ing the opioid receptor mu-1 gene (OPRM1) in-
volved in the brain reward system. Small ges-
tational age (SGA) is also well recognized and 
linked to an increased risk for rapid postnatal 
weight gain and subsequent development of 
obesity and chronic metabolic diseases later 
in life. The Auckland Birth weight Collaborative 
Study demonstrated that smoking, low preg-
nancy weight, maternal short stature, maternal 
diet, ethnic origin of mother and hypertension 
are all “environmental” risk factors for SGA 
(48). A subgroup of the cohort later established 
that polymorphic FTO (rs9939609, intron), 
KCNJ11 (rs5219, missense Lys23Glu), BDNF 
(rs925946, 9.2 kb upstream), PFKP (rs6602024, 
intron), PTER (rs10508503, 179 kb upstream) 
and SEC16B (rs10913469, intron) genes, were 
related to obesity, type 2 diabetes, and SGA 
which indicates the important interaction be-
tween genetic factors and fœtal environment 
(49). Finally, a prospective singleton normal 
pregnancy cohort study demonstrated a direct 

relationship between the maternal adipo-
kines, leptin (a satiety factor) and adiponectin 
(an insulin sensitizer). The study included 339 
healthy women without pre-existing diabetes 
who were evaluated at 24-28 and 32-35 weeks 
of gestation and the cord blood (foetal com-
partment) assessed at birth (50). Foetal insulin 
sensitivity was negatively associated with cord 
blood leptin and positively with pro-insulin con-
centrations, suggesting the maternal impact on 
foetal adipokines may be an early life pathway 
in maternal-foetal transmission of the propen-
sity to develop obesity and insulin resistance 
later in life. These examples provide compelling 
evidence on the role and impact of the foetal 
environment and development of chronic dis-
eases later in life.

Parental obesity more than doubles the risk 
of adult obesity among obese and non-obese 
children.					                                                                                                                                                     

Gene-environment interactions are modest, 
and individually are not able to explain the 
development of obesity and the onset of related 
diseases.					                                                                                                                                             

There are compelling evidence highlighting the 
role of foetal environment and development of 
chronic diseases later in life.			                                                                                                                

Table 1 Caveats in assessing insulin sensitivity

Variable Issue

Measurement of insulin Wide inter-inter method (laboratory) variations 
Variation in standardization among methods

Measurement of plasma glucose
Pre-analytical quality of blood specimens 

Glycolysis at room temperature 
NaF inhibits enolase, a late glycolytic enzyme

Patient preparation 
Poor assessment of patient’s nutritional status 

Elevation of post-prandial glucose in malnutrition 
and low carbohydrate diets
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OBESITY AND MICROBIOTA

In addition to the above considerations, the gut 
microbiota may increasingly be shown to impact 
the course of metabolic diseases. This aspect is 
briefly reviewed. The synergistic relationship 
between the human body and the vast microbi-
otic environment present on all interfaces with 
the exterior, particularly the gut lumen, has 
become of major interest to the medical com-
munity. The microbiome cell number far out-
numbers somatic or germ cells and represents a 
far more varied gene diversity than the human 
genome (51). The advent of high throughput 
genome sequencing technologies allowed the 
first meta-sequence of the human gut microbi-
ome to be conducted, utilizing stool collected 
from 124 individuals, and characterized > 3X106 
genes from approximately 1000 different mi-
croscopic species (52-54). An excellent review 
by Arora et al. (55) discusses the composition 
of the gut microbiota and its association with 
metabolic diseases. Figure 4, taken from this 
review, shows that 2 phyla, namely Firmicutes 
and Bacteriodetes, constitute healthy adult gut 

microbiota and their relative proportions differ 
among populations. 

Neonatal intestinal flora evolves according to its 
early environmental exposures, nutrition pat-
terns (maternal or industrial milk), hygiene lev-
els and therapeutic drug usage (56). Differences 
in intestinal flora patterns during the first six 
months of life may have potential impact and 
downstream consequences on the later devel-
opment of chronic conditions such as type 2 
diabetes and allergies (57, 58). 

The gut microbiota has emerged as a new im-
portant player in the pathogenesis of obesity, 
potentially explained by the fact that each mi-
crobiotic species transforms the undigested 
and partially digested food into metabolites 
that may influence the physiological systems 
of the host. Therefore, a loss in diversity may 
lead to unwanted effects (55). This hypothesis 
is supported by the observation that composi-
tion of the gut microflora is globally less di-
verse in obese subjects, with a relative enrich-
ment in Firmicutes and a impoverishment in 
Bacteroïdes (59). Moreover, detailed analysis 

Table 2 Cut-off  points for defining insulin resistance (IR)

Insulin measurement
Population 

Studied
Age 

(years)
Gender

HOMA-IR 
95th percentile

Ref

Immunoassay  
(Access, Beckman Coulter) French Canadian

9 
13 
16

M/F
1.88/2.07 
3.28/3.86 
3.31/3.10

(76)

Fluoroimmunoassay  
(AutoDelfia, Pharmacia) Brazilian 10-19 M/F >2.93 (77)

Chemiluminescence 
Immunoassay  

(Immulite, Siemens)
American 11-14 M/F ≥2.7 (78)

Chemiluminescence 
Immunoassay  

(Cobas, Roche Diagnostics)
Spanish 8-18 M/F ≥3.6 (79)



eJIFCC2017Vol28No1pp006-024
Page 14

E. Levy, A.K. Saenger, M.W. Steffes, E. Delvin
Pediatric obesity and cardiometabolic disorders: risk factors and biomarkers

Figure 4 Quantitative comparison of  faecal microbiota in two healthy populations

*Reproduced with permission from: Aurora T et al. J Intern Med 2016 Apr 12. doi: 10.1111/joim.12508.
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of the flora in obese subjects reveals a bimod-
al distribution: those with a low gene count 
(LGC) characterised by the predominance of 
5 pro-inflammatory bacteria and a less diver-
sified metagenome, and those with a high 
gene count (HGC) with a high percentage of 
4 anti-inflammatory bacteria genii (60). The 
LGC group presents with insulin-resistance, 
dyslipidemia and low-level infiltration of adi-
pose tissue with pro-inflammatory cytokine 
secreting immunity cells. It has recently been 
established that levels of butyrate-producing 
bacteria are reduced in patients with type-2 
diabetes, whereas levels of Lactobacillus sp. 
are increased, thus the reduction of butyrate-
producing bacteria may be causally linked to 
type 2 diabetes. The causal relationship for 
these differences in humans remains to be 

elucidated but opens the way to possible treat-
ment of obesity via dietary manipulation. For 
example, a low calorie regiment composed of 
plant fibres, proteins and low carbohydrates 
potentially increases the microbiota diversity 
(61). Interestingly, bariatric surgery also in-
creases the gut microbiota diversity (62, 63). 
As each microbiotic species transforms the 
undigested and partially digested food into 
metabolites that may influence the physiolog-
ical systems of the host, a loss in diversity may 
lead to unwanted effects.

The gut microbiota, a new player in the world 
of obesity and cardiometabolic diseases, is 
increasingly called upon to elucidate findings 
related to these diseases and may eventually 
impact their course and treatment.		                                                                     

Figure 5 Impact of  obesity on health status 
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BIOMARKERS

The status of metabolically healthy obese (MHO) 
individuals has been reported (64, 65) but obesity, 
particularly abdominal, remains a major risk 
factor for developing a series of complications 
(Figure 5) such as the metabolic syndrome, 
type 2 diabetes, early atherosclerosis and non-
alcoholic fatty liver disease (NAFLD), the latter 
considered the hepatic manifestation of insulin 
resistance (66-68). Cellular redox potential 
imbalance, inflammatory processes and insulin 

resistance are central in the development of the 
complex chronic metabolic disturbances (Figure 
6); hence measurement of related biomarkers to 
detect minor disturbances could help distinguish 
MHO from metabolically non-MHO individuals, 
and may result in establishing early primordial 
prevention programs. However, at the present 
time there is no international consensus as to 
the specific pathways that should preferentially 
be targeted in order to define the prevalence 
and severity of the conditions during childhood 
and adolescence.

Figure 6 Cellular redox potential imbalance, inflammatory processes  
and insulin resistance in the development  
of  diabetes and non-alcoholic liver disease (NAFLD)
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IMAGING TECHNIQUES

In the last decade, utilization of ultrasonogra-
phy, transient elastography and magnetic reso-
nance imaging (MRI) has increased significantly. 
In the context of the present review these tech-
niques, except for MRI, are not suitable for the 
detection of metabolic disturbances and are 
primarily used to evaluate the extent of liver 
damage. Although widely available, ultrasonog-
raphy is unable to accurately detect or quantify 
early liver fatty acid infiltrations. Furthermore, 
this technique is prone to observer- and oper-
ator-dependent variability and its use in obese 
patients is subject of debate (69, 70). Transient 
elastography, based on the assessment of liver 
stiffness, has also been shown to be useful in 
presence of significant fibrosis and cirrhosis 
(71). Liver magnetic resonance imaging–es-
timated proton density fat fraction (PDFF) is 
more sensitive and favourably comparable to 
histopathology scores (72). This technology is 
currently restricted to tertiary care institutions, 
is expensive, and demands experienced staff. In 
summary, these imaging techniques are useful 
in detecting steatosis, but they are relatively 
inefficient in determining early stage liver dam-
age. Biomarkers easily measured in central lab-
oratories are therefore of utmost importance 
and should center on insulin resistance, inflam-
mation and oxidative stress, as this triad is the 
signature of NAFLD.

INSULIN RESISTANCE

The term insulin resistance (IR) frequently re-
fers to a physiological state characterized by a 
diminished biological response to insulin. More 
precisely, IR refers to a holistic reduction of glu-
cose uptake in response to physiological insulin 
concentrations, primarily in muscle tissue. The 
optimal assessment of IR in children and ado-
lescents remains controversial. Following the 
Consensus Conference on Childhood IR in 2010, 

experts highlighted: 1) the paucity of data re-
garding cut-offs to define insulin resistance; 
2) poor performance of surrogate measures 
such as fasting plasma insulin; and 3) lack of 
justification for screening children, even obese 
children, because there are no accepted treat-
ments for euglycemic IR (73). However, the 
development of robust methods for assessing 
insulin sensitivity (IS) in paediatric populations 
remains of great interest, particularly for epi-
demiological studies to monitor metabolic tra-
jectory into adulthood. 

The hyperinsulinemic-euglycemic clamp is the 
gold standard for determining total-body IS (73). 
However, it is not applicable in the context of 
population screening or routine clinical work-
up. In 2014 Brown and Yanovski (74) published 
an excellent review on this technique as well as 
surrogate measures and their pitfalls. The hyper-
insulinemic-euglycemic clamp, as its name indi-
cates, depends on repeated measures of both 
insulin and blood glucose, each having their 
own potential analytical pitfalls that may hinder 
inter-laboratory comparison (Table 1).

Reliable interpretation of hyperinsulinemic-
euglycemic clamp studies is also dependent 
upon normal inter-individual biological differ-
ences such as insulin clearance rates and time 
required to reach a steady state. Alternative 
methods include the insulin tolerance test (ITT), 
the hyperglycemic clamp, the insulin-modified 
or frequently sampled intravenous glucose tol-
erance test (FSIGT) and the more frequently 
used oral glucose tolerance test (OGTT) (74). 

FASTING INSULIN AND THE HOMA-IR

Assessment of IR or IS is frequently conduct-
ed using single measurements due to ease 
of availability and simplicity. Measurement 
of fasting insulin concentrations are consid-
ered representative of insulin hepatic sensi-
tivity (low concentrations) or resistance (high 
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concentrations). In theory, this information 
is valuable and may alert clinicians to even-
tual liver function impairment but there are 
issues around defining an abnormal elevated 
fasting insulin concentration because the data 
on reference values in fasting insulinemia are 
scarce. In addition, the lack of standardization 
or harmonization between different insulin 
assays hampers direct comparison between 
laboratories, peer-reviewed publications, and 
impedes coherent measures for treatment 
guidelines. This was highlighted in 2007 by 
the IFCC Working Group on Standardization of 
Insulin Assays, in an evaluation of 12 commer-
cial insulin methods (75). The within-assay CVs 
ranged from 3.7% to 39.0% and between assay 
CVs from 12% to 66% (75). In 2009 the working 
group reported that 4 out of 10 insulin assays, 
when re-calibrated with a purified recombinant 
insulin preparation, had ≥ 95% of the 39 indi-
vidual donor sera results within 32% of the tar-
get value assigned by an isotope dilution-mass 
spectrometry assay. In addition, 7 of 10 assays 
had a bias >15% in 36 to 100% of individual 
samples. The consensus group concluded that 
agreement between assays would improve us-
ing an international reference material and a 
higher order mass spectrometry method (76). 
Subsequent high-throughput mass spectrom-
etry immunoassays have been developed to 
quantitate human intact insulin as well as in-
sulin analogs, which may allow an accurate 
definition of insulinemia to be determined (77, 
78). Accurate measurement of plasma insulin 
is of paramount importance for establishing 
comparable Homeostasis Model Assessment 
of IR (HOMA-IR) reference values across labo-
ratories, although variation between ethnic 
populations may be a confounding factor that 
should be taken into consideration. At the pres-
ent time HOMA-IR cut-offs are still highly meth-
od dependent. Table 2 illustrates the distribu-
tion of published cut-off points for defining IR, 

and confirm the warning of Wallace et al. (79): 
“The HOMA model has become a widely used 
clinical and epidemiological tool and, when 
used appropriately, it can yield valuable data. 
However, as with all models, the primary input 
data need to be robust, and the data need to 
be interpreted carefully.” To address this issue, 
the IFCC (http://www.ifcc.org/ifcc-scientific-di-
vision/sd-working-groups/wg-sia/), in collabo-
ration with the American Diabetes Association 
(ADA) and the European Association for the 
Study of Diabetes (EASD), has created the 
Working group on Standardisation of Insulin 
Assays (WG-SIA) with the mandate of improv-
ing the standardization of assays for insulin 
by the development of a candidate reference 
method based on liquid chromatography-tan-
dem mass spectrometry, and of a lyophilized 
recombinant human insulin preparation as pri-
mary reference material.

Although insulin resistance is a well-recognized 
clinical entity, there are currently no interna-
tionally accepted definition of its expression in 
children and adolescents. One well-character-
ized definition requires the presence of three or 
more factors which can be age-adjusted to de-
fine hyperinsulinaemia: Overweight, high sys-
tolic blood pressure, hypertriglyceridemia, low 
HDL-cholesterol and impaired fasting plasma 
glucose (84).

Data on normal reference intervals for fasting 
insulinemia are scarce.			                                                                                                                                  

Lack of standardized or harmonized insulin as-
says hampers comparison between laboratories 
and impedes coherent measures for treatment 
guidelines.					                                                                               

Distinguishing MHO young patients from those 
unhealthy bears a major clinical importance as 
they are, for reasons that are yet to be defined, 
resistant to develop CMD; hence follow-up and 
treatment differ (64). Low-grade inflammation 

http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/wg-sia/
http://www.ifcc.org/ifcc-scientific-division/sd-working-groups/wg-sia/
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and cellular redox potential imbalance are, to-
gether with insulin resistance, key-role players 
in the development of the non-healthy state in 
obese subjects. 

INFLAMMATION

Inflammation is the second cause in the devel-
opment of CMD and NAFLD related to paediat-
ric obesity. A number of biomarkers have been 
identified but primarily in the context of clini-
cal trials, thus their specificity, sensitivity and 
predictive values have yet to be defined for 
screening and diagnostic purposes. C-Reactive 
Protein (CRP), a member of the pantraxin fam-
ily involved in plaque instability, is the most 
commonly utilized inflammatory biomarker. 
Although the sensitivity of CRP is generally 
high, the specificity is low, particularly in the 
setting of potential low-grade inflammation. 
Nevertheless, discrete elevation in circulating 
CRP concentrations has been associated in the 
definition of the metabolic syndrome (84, 85). 
Its advantage resides in its wide accessibility 
by central laboratories. However, as for any 
other biomarkers, well-defined age-, sex- and 
ethnicity-adjusted reference values or thresh-
olds have to be defined if they are to be used 
for clinical purposes. The analytical sensitiv-
ity, even for the high-sensitivity CRP (hsCRP) 
test, however, limits the definition of refer-
ence ranges. One European population-based 
study reported that 44% of the 9855 children 
tested exhibited serum CRP concentrations 
below the detection limit (0.2 mg/l) and con-
firmed our observation (85) to the effect that 
obesity influenced serum CRP concentrations 
(86). 

C-Reactive Protein (CRP) is the most commonly 
utilized biomarker of inflammation. The speci-
ficity of CRP is questionable, particularly in the 
setting of low-level inflammation.		                                                                                                                                    

Well-defined age-, sex- and ethnicity-adjusted 
reference values or thresholds have to be de-
fined if they are to be used for clinical purposes.

Visceral adipose tissue per se and its resident 
macrophages contribute importantly to sys-
temic inflammation by secreting adipokines and 
pro- and anti-inflammatory cytokines. Indeed, 
clinical studies have consistently shown elevat-
ed blood concentrations of pro-inflammatory 
cytokines such as IL-6, IL-8, TNFα, PAI-1, resis-
tin and amylin in overweight and obese insulin-
resistant youth (87-90). However, this relation-
ship does not imply unanimity. A recent report 
has noted that the relationship between pro-in-
flammatory and metabolic markers commonly 
observed in adults and pubertal adolescents 
is reversed in healthy black and white children 
before puberty, which warrants questions as to 
whether these inverse relationships modify the 
trajectory later in life (91). Population-based 
studies focused on evaluating pro-inflammatory 
and metabolic markers to determine which bio-
markers constitute sensitive and specific tools 
in the context of a diagnosis of insulin resis-
tance would be valuable.

OXIDATIVE STRESS

Oxidative stress is often a neglected cause of 
paediatric obesity-related morbidities, and no 
biomarkers have been successfully validated 
yet for routine clinical use. To our knowledge 
there are no clinical research studies demon-
strating that circulating concentrations of malo-
nyldialdehyde (MDA), Hydroxynonenal (HNE), 
advanced glycation end-products (AGEs) and 
8-hydroxy-2-deoxyguanosine (8-OH-dG), which 
are surrogate markers for lipids, proteins and 
deoxyribonucleic acid damages respectively, 
are effective diagnostic tools for CMD in child-
hood and adolescence. 

In an observational study performed on 35 
children between the ages of 12 and 18 years, 
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Khelishadi et al. (92) reported that the age- and 
sex-adjusted changes in ox-LDL, waist circum-
ference, CRP, MDA and body fat mass had the 
highest correlations with changes in coronary 
intima media thickness. More recently, in a 
population-based study, Galan-Chilet et al. (93) 
demonstrated a positive association of seleni-
um at plasma concentrations above ~110 μg/L 
for 8-oxo-dG, but an inverse association with 
GSSG/GSH and MDA. They further identified 
potential risk genotypes associated with in-
creased levels of oxidative stress markers with 
high selenium levels.

CONCLUSIONS

There is currently no single biomarker which 
can adequately define obesity-related CMD 
risk in paediatrics or adults. Prospective clinical 
trials should focus on devising a score based on 
well-characterized and appropriately validated 
biomarkers. 
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